首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   353篇
  免费   51篇
  2022年   2篇
  2021年   9篇
  2020年   4篇
  2019年   7篇
  2018年   8篇
  2017年   5篇
  2016年   4篇
  2015年   17篇
  2014年   18篇
  2013年   22篇
  2012年   22篇
  2011年   24篇
  2010年   22篇
  2009年   17篇
  2008年   32篇
  2007年   27篇
  2006年   24篇
  2005年   15篇
  2004年   17篇
  2003年   20篇
  2002年   18篇
  2001年   4篇
  2000年   4篇
  1999年   7篇
  1998年   5篇
  1997年   6篇
  1995年   1篇
  1994年   1篇
  1992年   9篇
  1991年   6篇
  1990年   5篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1971年   3篇
  1969年   2篇
  1968年   1篇
  1964年   1篇
排序方式: 共有404条查询结果,搜索用时 15 毫秒
31.
32.
Yeast Ubp3 and its co-factor Bre5 form a deubiquitylation complex to regulate protein transport between the endoplasmic reticulum and Golgi compartments of the cell. A novel N-terminal domain of the Ubp3 catalytic subunit forms a complex with the NTF2-like domain of the Bre5 regulatory subunit. Here, we report the X-ray crystal structure of an Ubp3-Bre5 complex and show that it forms a symmetric hetero-tetrameric complex in which the Bre5 NTF2-like domain dimer interacts with two L-shaped beta-strand-turn-alpha-helix motifs of Ubp3. The Ubp3 N-terminal domain binds within a hydrophobic cavity on the surface of the Bre5 NTF2-like domain subunit with conserved residues within both proteins interacting predominantly through antiparallel beta-sheet hydrogen bonds and van der Waals contacts. Structure-based mutagenesis and functional studies confirm the significance of the observed interactions for Ubp3-Bre5 association in vitro and Ubp3 function in vivo. Comparison of the structure to other protein complexes with NTF2-like domains shows that the Ubp3-Bre5 interface is novel. Together, these studies provide new insights into Ubp3 recognition by Bre5 and into protein recognition by NTF2-like domains.  相似文献   
33.
We present an analytical model that unifies two of the most influential theories in community ecology, namely, island biogeography and niche theory. Our model captures the main elements of both theories by incorporating the combined effects of area, isolation, stochastic colonization and extinction processes, habitat heterogeneity, and niche partitioning in a unified, demographically based framework. While classical niche theory predicts a positive relationship between species richness and habitat heterogeneity, our unified model demonstrates that area limitation and dispersal limitation (the main elements of island biogeography) may create unimodal and even negative relationships between species richness and habitat heterogeneity. We attribute this finding to the fact that increasing heterogeneity increases the potential number of species that may exist in a given area (as predicted by niche theory) but simultaneously reduces the amount of suitable area available for each species and, thus, increases the likelihood of stochastic extinction. Area limitation, dispersal limitation, and low reproduction rates intensify the latter effect by increasing the likelihood of stochastic extinction. These analytical results demonstrate that the integration of island biogeography and niche theory provides new insights about the mechanisms that regulate the diversity of ecological communities and generates unexpected predictions that could not be attained from any single theory.  相似文献   
34.
Multiple roles for acetylation in the interaction of p300 HAT with ATF-2   总被引:1,自引:0,他引:1  
Karanam B  Wang L  Wang D  Liu X  Marmorstein R  Cotter R  Cole PA 《Biochemistry》2007,46(28):8207-8216
  相似文献   
35.
A key endothelial receptor in leukocyte-endothelial cell (EC) interactions is ICAM-1. ICAM-1 is constitutively expressed at low levels on vascular ECs, and its levels significantly increase following stimulation with many proinflammatory agents. This study provides evidence that in inflamed arterioles of anesthetized mice (65 mg/kg ip Nembutal), ICAM-1 mediates leukocyte rolling, in contrast to its expected role of mediating firm adhesion in venules. The number of leukocytes rolling on arteriolar ECs is decreased in ICAM-1 knockout (KO) compared with wild-type (WT) mice (KO, 6.0 +/- 0.9; WT, 12.0 +/- 1.0 leukocytes/40 s; P < 0.05), whereas the leukocyte-rolling number in venules remains unaffected (KO, 5.6 +/- 0.9; WT, 7.0 +/- 0.7 leukocytes/40 s; n = 13-15 sites). We also show that the fraction of leukocytes that is rolling on arteriolar ECs does so with a higher characteristic velocity (>70 microm/s), and, furthermore, that the distance over which rolling contacts with the arteriolar wall are maintained is ICAM-1 dependent. In ICAM-1 KO animals or in WT mice in the presence of ICAM-1-blocking antibody, leukocytes rolled significantly shorter distances over the sampled 200-microm vessel length compared with WT (68 +/- 6.7 and 55 +/- 9.4 vs. 85 +/- 12.9% total, respectively, n = 4 sites, P < 0.05). We also found evidence that in ICAM-1 KO mice, a significant fraction of leukocyte rolling and adhesive interactions with arteriolar ECs could be accounted for by upregulation of another adhesion molecule, VCAM-1, providing an important illustration of how expression of related proteins can be altered following genetic ablatement of a target molecule (in this case ICAM-1).  相似文献   
36.
37.
Toll-like receptors modulate adult hippocampal neurogenesis   总被引:2,自引:0,他引:2  
Neurogenesis - the formation of new neurons in the adult brain - is considered to be one of the mechanisms by which the brain maintains its lifelong plasticity in response to extrinsic and intrinsic changes. The mechanisms underlying the regulation of neurogenesis are largely unknown. Here, we show that Toll-like receptors (TLRs), a family of highly conserved pattern-recognizing receptors involved in neural system development in Drosophila and innate immune activity in mammals, regulate adult hippocampal neurogenesis. We show that TLR2 and TLR4 are found on adult neural stem/progenitor cells (NPCs) and have distinct and opposing functions in NPC proliferation and differentiation both in vitro and in vivo. TLR2 deficiency in mice impaired hippocampal neurogenesis, whereas the absence of TLR4 resulted in enhanced proliferation and neuronal differentiation. In vitro studies further indicated that TLR2 and TLR4 directly modulated self-renewal and the cell-fate decision of NPCs. The activation of TLRs on the NPCs was mediated via MyD88 and induced PKCalpha/beta-dependent activation of the NF-kappaB signalling pathway. Thus, our study identified TLRs as players in adult neurogenesis and emphasizes their specified and diverse role in cell renewal.  相似文献   
38.
The protumorigenic functions for autophagy are largely attributed to its ability to promote cancer cell survival in response to diverse stresses. Here we demonstrate an unexpected connection between autophagy and glucose metabolism that facilitates adhesion-independent transformation driven by a strong oncogenic insult-mutationally active Ras. In cells ectopically expressing oncogenic H-Ras as well as human cancer cell lines harboring endogenous K-Ras mutations, autophagy is induced following extracellular matrix detachment. Inhibiting autophagy due to the genetic deletion or RNA interference-mediated depletion of multiple autophagy regulators attenuates Ras-mediated adhesion-independent transformation and proliferation as well as reduces glycolytic capacity. Furthermore, in contrast to autophagy-competent cells, both proliferation and transformation in autophagy-deficient cells expressing oncogenic Ras are insensitive to reductions in glucose availability. Overall, increased glycolysis in autophagy-competent cells facilitates Ras-mediated adhesion-independent transformation, suggesting a unique mechanism by which autophagy may promote Ras-driven tumor growth in specific metabolic contexts.  相似文献   
39.
40.
The SOS genetic network is responsible for the repair/bypass of DNA damage in bacterial cells. While the initial stages of the response have been well characterized, less is known about the dynamics of the response after induction and its shutoff. To address this, we followed the response of the SOS network in living individual Escherichia coli cells. The promoter activity (PA) of SOS genes was monitored using fluorescent protein-promoter fusions, with high temporal resolution, after ultraviolet irradiation activation. We find a temporal pattern of discrete activity peaks masked in studies of cell populations. The number of peaks increases, while their amplitude reaches saturation, as the damage level is increased. Peak timing is highly precise from cell to cell and is independent of the stage in the cell cycle at the time of damage. Evidence is presented for the involvement of the umuDC operon in maintaining the pattern of PA and its temporal precision, providing further evidence for the role UmuD cleavage plays in effecting a timed pause during the SOS response, as previously proposed. The modulations in PA we observe share many features in common with the oscillatory behavior recently observed in a mammalian DNA damage response. Our results, which reveal a hitherto unknown modulation of the SOS response, underscore the importance of carrying out dynamic measurements at the level of individual living cells in order to unravel how a natural genetic network operates at the systems level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号